UNIVERSITY OF

Southampton

School of Mathematics

Packing, Pricing and Loading Operations




UNIVERSITY OF

Southampton

School of Mathematics

Talk contents

 Commercial partner: Red Funnel
« Blocks of work

« Integrated dynamic pricing and packing
* Queue constrained loading operations

* Vehicle ferry loading simulator (demo)
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RED FUNNEL

Commercial partner

 Red Funnel: provide a road vehicle transport
service between Southampton and the Isle of

Wight

e From small vehicles such as motorbikes to large
freight vehicles

e Tickets can be bought online up to 6 months
prior to departure
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* Red Funnel’s
terminal in
Southampton

* Ro-ro ferries (roll on
roll off)
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| {width, height, length}

2.5m by 2m by 80m

2.5m by 2m by 85.5m

2.5m by 2m by 88.7m

Lane parking of cars and
motorcycles on the upper
deck and cars only on the
mezzanine decks when they
are in operation

2.5m by 2m by 78.0m
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2.5m by 4.9m (or 2.7m) by 80.4m

2.5m by 4.9m (or 2.7m) by 80.4m

2.5m by 4.9m (or 2.7m) by 80.4m

2.5m by 4.9m (or 2.7m) by 80.4m

2.5m by 4.9m (or 2.7m) by 66.2m
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Mezzanine decks

The use of mezzanine decks increase the capacity of the ferry for low vehicles
whilst reducing the capacity for high vehicles
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Deck configurations and demand scenarios
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INTEGRATED PRICING AND
PACKING
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Dynamic pricing problem description

Objective: derive a dynamic pricing policy that maximises the expected revenue
from the sale of vehicle tickets

 Ferry capacity depends on packing efficiency

e Customers

— Arrive at random times during the selling season which begins 6 months
before departure

— Customer willingness-to-pay is dependent on time until departure and
varies between vehicle types

— Vehicles vary in size
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Illustration of one selling season

Start of
selling
season

Departure

Discrete

— time _—

At most one
customer arrival
per time period
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Integrating packing and pricing

We have developed two main approaches
« 1. Optimal (Exact)
« 2. Heuristic (Simulation based)

Dk Stat Pricing
i dleS :
dC .|ng Provides | e For the : algorlthm
algonth Im vehicle mixes 1. Dynamic |
1. 1D Bin Packing 2. Remaining prograr_nmmg
2. 2D Packing area on each 2. Appro>§|mate
Heuristic deck dynamic |
programming

Capacity model Capture remaining capacity Returns optimal dynamic

pricing policy
11
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Integrating packing and pricing

e Notation

s denotes the state at any given time interval and captures the ferries remaining

capacity for vehicles.

s’ denotes the new state after one sale starting from state s

V,(s) denotes the ‘revenue-to-go’ or the expected future revenue if the state is

sattimet

A¢ ; denotes the probability that a customer with vehicle type i arrives at time
t

12
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Integrating packing and pricing

® I N put fu nCti Ons price acceptance probability distribution
¢ exziqsztgzgéhaeczzg:‘:j;: g ,",’ b: maximum Zrobabcijlity offprice
- - robability independent o . acceptance independent of price
— Price acceptance function: B o0 A
a(i,p, t) returns the probability vt
- . 08 - sigmoidal term for the
that a customer with vehicle type il
i will pay a price p attime t & oo S
- - - i pO: midpoint price
— Transition function: 5 %47

f (s, i) returns the new selling 02
season state s’ if a customer with N 0
vehicle type i purchases a ticket 0

: minimum prof é ili 00'4 . '
at a time when initially in the R 08 T

price acceptance price time

- independent of time
state IS s
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Integrating packing and pricing
e Dynamic pricing formulation

— The optimal dynamic pricing look-up-table policy can be derived by solving
the Bellman equations by backwards recursion
{ (3) (2) (1)

2 At,i{a(i» p, )+ Vepr (f(s,0))) + (1 —a(i,p, t))Vt+1(S)} + At 0Ver1(S)

1EI

Vi(s) = s

VseSVtel..T—1
Vr(s) =0,V:(0) =0
— In each state at each time 3 events can occur

1. No customers arrive
2. A customer arrives but does not purchase a ticket
3. A customer arrives and purchases a ticket

14
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One-dimensional bin packing (1DBP)
Two-dimension packing heuristic (2DH)

PACKING ALGORITHM DERIVED
STATES

15
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Exact and Simulation based state definitions

Exact

State=count of
vehicles of each
type who have

purchased tickets l
1 state dimension
per vehicle type . I

Simulation based

* State=remaining area on
each deck

* 1 state dimension per deck
region

=

/

A

s

Transition equations I for one vehicle type O sale

state = 3,2,1,1,4
f({3,2,1,1,4},0) = {3,2,1,1,4} + {1,0,0,0,0} = {4,2,1,1,4}

state = A = 950.8, transition value = 26.2
£(950.8,0) = 950.8 — 26.2 = 924.6 16



One-dimensional bin packing (1DBP)

e Each deck consists of a set of lanes (bins)
e Each bin has a width, height and length (constraints)

e Maximise the value of the packed vehicles

1wl il
e Max Zi=lzj=12kilsijkxijk

Zz:xijkﬁdi Vi el

JEJ K€]Jj

UNIVERSITY OF

Southampton

School of Mathematics

17



One-dimensional bin packing (1DBP)

e Extended to allow:

— for vehicles parked across adjacent lanes

— for variable lane and deck configurations
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Two-dimensional packing heuristic (2DH)

 Avehicle sliding procedure was used to track the remaining space state and
the available vehicle positions

Open positions
\*e

] v, Vehicle * "ﬁt‘ a,

| L sliding 5= , - az
- >\ Remaining area
| procedure ;
- v ) \ calculation

| ' Entrance te

A=a1+a2

e Loading decisions (vehicle k and its position j) are chosen to maximise a
weighted sum of efficiency attribute scores

- (% k*) = argmax{Xi-; w;a;j}

e A metaheuristic is used to tune the weights to maximise packing efficiency -



UNIVERSITY OF

Southampton

School of Mathematics

Vehicle mix state space

Vehicle type 2 > vehicle type 1

Pareto front
(3,3)

Vehicle type 2
TP l(s,z)

Capacity envelope J (7,1)

1 (8,0)

Vehicle type 1



Remaining deck area state space

The value of this state has to be interpolated
from the neighbouring defined points

A

A

Main deck

remaining area

Y

=

y
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Different vehicle types have
different space requirements
(different arrow length)

Non-linear discretisation choice
allows for low remaining capacity
state where only some vehicles
types still fit onto the ferry

A pointwise value function
approximation is calculated which
yields a corresponding dynamic

pricing policy

Car deck remaining area
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Intermediate state value interpolation (1-d case)

Value

%Vt([sj) | o el AR
; d
X y = Vi(lsD + d1avt(lsj)
z d
5 z = Ve([s]) — d, th([SD
A 0
. . ; ; a_Vt([SD
Linear interpolation s Vei(is) =ecx+ (1 —c)(dyy + dq2)
State
— iy > d, —» P (Ve(s) = V(s = 1)) + (Ve(s + 1) — V,(s))
! a—Vt(S) =
‘ S 2
5] s <1 -
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Approximating the value function (Simulation based approach)

15 Interpolation value effect

=0 Overestimated total predicted revenue | mmm  optimal ¢ value

estimated revenues

71

205 Optimal balance nullifies discretization decision—>>

estimated total expected revenue

Underestimated total predicted revenue
1 1 1

67.5
20 25 30 35 40 45

sgrt(number of states)

V:(s) = c(linear interpolation) + (1 — c)(gradient based interpolation) 23
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Concave structure of value function
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Expected future revenue

=
!

600

200

Upper deck remaining space/m

20 0

400
200

Main deck remaining spa\cea’m2

The concave structure of
the value function is
exploited to speed up the
solution time of the
dynamic program

24
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Simulation based approach compared to Exact

Comparison of average revenue results for the exact and simulation based models for

120 -

2 vehicle types

100 |-

60 -

average revenue

40 -

|

3 vehicle types

4

various vehicle type discretization schemes

vehicle types 5 vehicle types

exact
—*— exact expected revenue
—©—1-d bin packing simheuristic
—=&— 2-d packing heuristic simheuristic

| |
— —
— —

—
- N T
(9p] o N~ (e}

1-D Simheuristic: -2.52% revenue
2-D Simheuristic:+31.72% revenue

3,511 |

3,711 -

3,911 |-
5711
5911 -

discretizations

7,911 - ¢

3,5,7,11

3,5,9,11

3,7,9,11

5,7,9,11
3,5,7,9,11 1
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The interaction between packing and pricing

e X-axis: vehicle mix state sorted by total length of
vehicles

50 |
e Y-axis: Total expected revenue

N
o
T

e Interpretation: future profit does not strictly
monotonically increase with remaining lane space

w
o
T

e This is because vehicle mixes with many large
vehicle reduce the flexibility for packing extra
vehicles thereafter

Total expected revenue
N
&)
T

107

1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
state lane utilisation (metres)
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THE VEHICLE FERRY LOADING
PROBLEM
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 Parallel queues for
pre-sorting vehicles

28
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The vehicle ferry loading problem

e On departure day vehicles who have purchased tickets arrive at random times
before departure

e Upon arrival vehicles are directed to terminal queues according to their type
and dimensions

e The queue orders are fixed and vehicles can only by loaded from the fronts of
gueues

e Vehicles that cannot be loaded receive a refund and compensation, known
collectively as a penalty

29
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Queue constraints can make a packing problem infeasible

Arrival Scenario 1

Arrival Scenario 2

Entrance Vehicle queue

Ferry

30

This problem can occur whenever it is not possible to keep all vehicle types in separate queues
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Queue constrained packing problem

Objective: maximise revenue from the sold vehicle tickets minus penalties for failing
to load any vehicles

e Inputs:
— Set of vehicles who have purchased tickets, arrival time uncertainty
 Decisions:

— Yard policy for arrival vehicles

— Packing solution after a realisation of arrivals




GUILLOTINE CUT INSPIRED
PACKING METHODOLOGY
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Sequential Guillotine—Cut—KnapSack packing approach (SGCKYS)

 Models queue order and position reachability constraints
« Vehicles are loaded from the fronts of queues first
« Parking positions have to be reachable from the ferry entrance
* In the SGCKS methodology there are two decision variables
 Yard policy
« Packing solution

» The yard policy and packing solutions are each encoded as integer strings

33



Yard policy solution encoding

| | Quantiles
Strip type small middle large
Length 3 4 5

Example solution={2,5,3}

Terminal

UNIVERSITY OF
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_ - - - - 2=Vehicles with a large width

5=Vehicles with a large length

[ [ [ () () [ [ [ T I 3=Vehicles with a small length

tin2tip122t2216,

The queue orders are dependent upon random

arrival times and a lane allocation policy

34
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SGCKS packing solution encoding

. lQuanties |

Strip type small middle I - 3 cut orientations
Bottom row 0 3 6 . .
Leftcolumn 1 4 7 » 3 rectangle size quantiles
Right column 2 5 8

@=hgticainkaovw aaepitibdn Etiasa biktsd o S

Example solution={3,2,7,0,6}

Terminal :

35
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SGCKS relaxation (General Packing or GP)

e Instead of strictly obeying the vertical and horizontal cuts use the nearest corner
positions, this recovers wasted space within previous cuts

36
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Utilisation
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Utilisations and optimality gaps for SGCKS approaches

1 300 T T T T T T T T "l
v
5 P
— = — cumulative frequency s
0.95 250 - frequency e .
s
/
/
0.9 [ 200 // -
> /
e ’
g /
0.85 3 150 ; i
2 /
o /
& /
08| 100 | // b
e
7
—— relaxation upper bound g JRe Average optimality gap=0.0271
00| —o—seeKs s
o o RM
Bottom left decreasing . . . . 0 K : A A | . A |
L 0 0005 001 0015 002 0025 003 0035 004 0045 0.05
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Problem instance number Upper bound estimate of optimality gap
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Two stage stochastic optimisation formulation

e First stage:

— Determine a yard policy that will maximise operational revenue
— Given uncertain arrival orders

e Second stage:
— Solve the packing solution for a realisation of the arrival process

— With yard queues built from the first stage yard policy solution

— The objective is to minimise penalty payments

38
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First stage solution strategy

e Use arandom set of arrival scenarios (S) as the training sample

e Find ayard policy y and a set of packing solutions P (one for each arrival
scenario) which maximises the achievable revenue

e Jterative metaheuristic iterates between

— Packing optimisation for each scenario whilst fixing the yard policy
— Optimise the yard policy whilst fixing the packing solution strings
e Two candidate objective functions

— EXxpected revenue
— MAXIMIN 6
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Maximise the intersection vehicle mix (MAXIMIN)
Arrival scenario 1 packing solution

2 small
vehicles
left off

Tickets
sold={3,3}

Arrival scenario 2 packing solution

Nested vehicle size

1 large vehicle
left off

{1,2}: Simple intersection (just take the minimum of each vehicle type)
{2,2}: Intersection after accounting for nested vehicle sizes

40
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Committing to a subset of the booked vehicles

e The vehicle mix intersection approach provides a single vehicle mix that can
definitely be packed in each scenario

e Therefore we could try to rebook vehicles not in the intersection

e Two policies are tested

— Commit to the intersection vehicle mix and pre-emptively refund the
rebooked vehicles (under the assumption that this rules out a compensation
payment)

— Commit all vehicles, this means do nothing

41
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First stage formulation

e max). -Revenue value of the achievable vehicle mix

yp i€ Rym

e Subject to

1. vg < g('ps,f(y, S)) VseS -SGCKS maps y and P to vehicle mixes
2. mj = Ignlrgl(vb]) or (ZbEB vb])/w Vj €]  -achievable vehicle mix (intersection or expected)
€
-over a subset of the arrival scenarios
3 BcS

-the size of the subset (risk parameter
4 |Bl=w (riskp )

42
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Experimental results

e Graph 1: The effect of the number of terminal queues on packing efficiency

e Graph 2: Objective function comparison and committed vehicle mix policy
comparison

e Graph 3: The effect of the size of number of scenarios (S) and subset size (W)

43



The effect of the number of queues

0.98 1

0.96

0.94

Ferry utilisation rate

0.88 |

0.86 [

0.84

0.92

09

......

—— Instance 1-10
—k— Instance 2-10
—O— Instance 3-33

5 10 15 20 25

Number of yard lanes
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Expected revenue Vs MINIMAX

Revenue

2.5

instance 1-30 instance 2-30

instance 3-55

—+—— expected revenue intersection committed
minimax revenue intersection committed
——— expected revenue all vehicles committed
—+— minimax revenue all vehicles committed

5 10 15 5 10 15 5 10
Uncertainty set size (S)

15
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The effect of |[B| and |S]|

Revenue

Subset size (B)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uncertainty 1 ‘55330'

set
size

(S)

2 56240 56778
3 55781 56352 56921

5 55494 56607 56827 56595 [S4863
655373 56767 56851 57188 561295
7/55682 56731 57021 55847 55667 55940 5

8 56225 56404 56524 56504 56548 54828 54825

9155516 56700 57148 56933 56277 55411 54828
10 55918 56289 56343 56980 56482 56080 54756
11 55992 56779 56849 56925 56377 56206 55543
12 55909 55892 57075 56919 56891 54781 56172 5
1354907 56373 56769 56728 56157 55482 56015 56173 &
14 56092 56052 56562 56993 56236 56396 54 69
15/55392 56118 56205 56980 56832 55514 56236 55900 55572 546
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Test scenarios Settings Yard layouts Score boards Scenario options

Name:

9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 27 28 29 30 31 32 33 34 35 36 3T 38 30 40 41 42 43 44 45 46 47 48 49

0.09281305910

1Pix:

- = o o i + g -

[ 4 4 = A " £l 0 | N 5 . . 3
Total vehicle weig p \
316.5 (

entre of mass i . -
within the feasible 2

4 L] :
J

0 Mezz Decks

2m by 43.5m

5m by

1 Mezz Decks

Save final solution

2 Mezz Decks

Computer solution

Overide
parking gaps

Auto complete

Include centre

of mass

Large vehicle
turning circles ] s 0(0.0)

Find best deck configuration
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Conclusion

e Two approaches to integrated packing and pricing for dynamic pricing of vehicle
ferry tickets were developed

e Main insights:

— Packing interactions preclude a strictly optimal formulation based on a
remaining space state in favour of vehicle mix states

— However close to optimal solutions can still be derived using a remaining
space state definition

49
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Conclusion

e The loading simulator implemented as a training tool has gained the interest of
Red Funnel

e In an investigation of the effect queue constrained packing—a problem that Red
Funnel will face to a greater extent in the future revealed that:

— Fewer queues does (as expected) significantly reduce packing efficiency

— A MaxiMin objective function reduces overfitting to a small sample of
training scenarios

— The number of scenarios and subset parameter choices depend on the degree
of nested vehicle size relations

50
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